Rabu, 01 Desember 2010

Dimensi Besaran

Dimensi besaran diwakili dengan simbol, misalnya M, L, T yang mewakili massa (mass), panjang (length) dan waktu (time). Ada dua macam dimensi yaitu Dimensi Primer dan Dimensi Sekunder. Dimensi Primer meliputi M (untuk satuan massa), L (untuk satuan panjang) dan T (untuk satuan waktu). Dimensi Sekunder adalah dimensi dari semua Besaran Turunan yang dinyatakan dalam Dimensi Primer. Contoh : Dimensi Gaya : M L T-2 atau dimensi Percepatan : L T-2Catatan :

Semua besaran dalam mekanika dapat dinyatakan dengan tiga besaran pokok (Dimensi Primer) yaitu panjang, massa dan waktu. Sebagaimana terdapat Satuan Besaran Turunan yang diturunkan dari Satuan Besaran Pokok, demikian juga terdapat Dimensi Primer dan Dimensi Sekunder yang diturunkan dari Dimensi Primer.

Berikut adalah tabel yang menunjukkan dimensi dan satuan tujuh besaran dasar dalam sistem SI.

Manfaat Dimensi dalam Fisika antara lain : (1) dapat digunakan untuk membuktikan dua besaran sama atau tidak. Dua besaran sama jika keduanya memiliki dimensi yang sama atau keduanya termasuk besaran vektor atau skalar, (2) dapat digunakan untuk menentukan persamaan yang pasti salah atau mungkin benar, (3) dapat digunakan untuk menurunkan persamaan suatu besaran fisis jika kesebandingan besaran fisis tersebut dengan besaran-besaran fisis lainnya diketahui.

Satuan dan dimensi suatu variabel fisika adalah dua hal berbeda. Satuan besaran fisis didefinisikan dengan perjanjian, berhubungan dengan standar tertentu (contohnya, besaran panjang dapat memiliki satuan meter, kaki, inci, mil, atau mikrometer), namun dimensi besaran panjang hanya satu, yaitu L. Dua satuan yang berbeda dapat dikonversikan satu sama lain (contohnya: 1 m = 39,37 in; angka 39,37 ini disebut sebagai faktor konversi), sementara tidak ada faktor konversi antarlambang dimensi.

ANALISIS DIMENSI

Analisis dimensi adalah cara yang sering dipakai dalam fisika, kimia dan teknik untuk memahami keadaan fisis yang melibatkan besaran yang berbeda-beda. Analisis dimensi selalu digunakan untuk memeriksa ketepatan penurunan persamaan. Misalnya, jika suatu besaran fisis memiliki satuan massa dibagi satuan volume namun persamaan hasil penurunan hanya memuat satuan massa, persamaan tersebut tidak tepat. Hanya besaran-besaran berdimensi sama yang dapat saling ditambahkan, dikurangkan atau disamakan. Jika besaran-besaran berbeda dimensi terdapat di dalam persamaan dan satu sama lain dibatasi tanda “+” atau “-” atau “=”, persamaan tersebut harus dikoreksi terlebih dahulu sebelum digunakan. Jika besaran-besaran berdimensi sama maupun berbeda dikalikan atau dibagi, dimensi besaran-besaran tersebut juga terkalikan atau terbagi. Jika besaran berdimensi dipangkatkan, dimensi besaran tersebut juga dipangkatkan.

Seringkali kita dapat menentukan bahwa suatu rumus salah hanya dengan melihat dimensi atau satuan dari kedua ruas persamaan. Sebagai contoh, ketika kita menggunakan rumus A= 2.Phi.r untuk menghitung luas. Dengan melihat dimensi kedua ruas persamaan, yaitu [A] = L2 dan [2.phi.r] = L kita dengan cepat dapat menyatakan bahwa rumus tersebut salah karena dimensi kedua ruasnya tidak sama. Tetapi perlu diingat, jika kedua ruas memiliki dimensi yang sama, itu tidak berarti bahwa rumus tersebut benar. Hal ini disebabkan pada rumus tersebut mungkin terdapat suatu angka atau konstanta yang tidak memiliki dimensi, misalnya Ek = 1/2 mv2 , di mana 1/2 tidak bisa diperoleh dari analisis dimensi.

Anda harus ingat karena dalam suatu persamaan mungkin muncul angka tanpa dimensi, maka angka tersebut diwakili dengan suatu konstanta tanpa dimensi, misalnya konstanta k.

Contoh Soal : menentukan dimensi suatu besaran

Tentukan dimensi dari besaran-besaran berikut ini : (a) volum, (b) massa jenis, (c) percepatan, (d) usaha

Anda harus menulis rumus dari besaran turunan yang akan ditentukan dimensinya terlebih dahulu. Selanjutnya rumus tersebut diuraikan sampai hanya terdiri dari besaran pokok.

Jawaban :

(a) Persamaan Volum adalah hasil kali panjang, lebar dan tinggi di mana ketiganya memiliki dimensi panjang, yakni [L]. Dengan demikian, Dimensi Volume :

(b) Persamaan Massa Jenis adalah hasil bagi massa dan volum. Massa memiliki dimensi [M] dan volum memiliki dimensi [L]3. Dengan demikian Dimensi massa jenis :

(c) Persamaan Percepatan adalah hasil bagi Kecepatan (besaran turunan) dengan Waktu, di mana Kecepatan adalah hasil bagi Perpindahan dengan Waktu. Oleh karena itu, kita terlebih dahulu menentukan dimensi Kecepatan, kemudian dimensi Percepatan.

(d) Persamaan Usaha adalah hasil kali Gaya (besaran Turunan) dan Perpindahan (dimensi = [L]), sedang Gaya adalah hasil kali massa (dimensi = [M]) dengan percepatan (besaran turunan). Karena itu kita tentukan dahulu dimensi Percepatan (lihat (c)), kemudian dimensi Gaya dan terakhir dimensi Usaha.


Tidak ada komentar:

Poskan Komentar